- дифференциальные уравнения
-
дифференциальные уравнения
—
[http://www.iks-media.ru/glossary/index.html?glossid=2400324]
дифференциальные уравнения
Уравнения, предназначенные для выражения соотношений не только между отдельно взятыми величинами, но и между их изменениями. Это уравнения, в той или иной форме связывающие независимые переменные (см. Аргумент функции), искомые функции и их производные. Решение (интегрирование) Д.у. заключается в отыскании функции, которая удовлетворяет этому уравнению для всех значений независимой переменной (или переменных) в определенном конечном или бесконечном интервале. Такое решение может быть проверено подстановкой. Если неизвестная функция зависит от одной независимой переменной, то Д.у. называется обыкновенным; если рассматривается функция многих переменных и в уравнении содержатся частные производные — уравнением в частных производных (с частными производными). Порядком Д.у. называется высший из порядков производных или дифференциалов, входящих в уравнение. Общий вид обыкновенного Д.у. n-го порядка: F(x, y, y?, …, y(n)) = 0. Общий вид решения обыкновенного Д.у. n-го порядка можно записать так: y = f (x, c1, c2, …, cn). Здесь c1, c2 и т.д. — произвольные постоянные (постоянные интегрирования), каждый частный набор которых дает частное решение. Таким образом, Д.у. сами по себе, без наложенных дополнительных ограничений, описывают целые классы функций. Если речь идет об обыкновенном уравнении n-го порядка (т.е. об уравнении, содержащем производную n-го порядка), то решение содержит ровно n произвольных постоянных. Для того чтобы выделить из этого класса единственное решение, обычно необходимо задать n дополнительных ограничений на функцию. Например, Д.у. позволяют определять поведение решения всюду, где оно существует, если заданы начальные условия, т.е. значения функции и ее производных в начальной точке. В огромном числе случаев законы природы и общества, управляющие теми или иными процессами, могут быть выражены в форме Д.у., а расчет течения этих процессов сводится к решению таких уравнений.
[http://slovar-lopatnikov.ru/]Тематики
- экономика
- электросвязь, основные понятия
EN
- differential equations
Справочник технического переводчика. – Интент. 2009-2013.
Дифференциальные уравнения — Дифференциальные уравнения [differential equations] уравнения, предназначенные для выражения соотношений не только между отдельно взятыми величинами, но и между их изменениями. Это уравнения, в той или иной форме связывающие независимые… … Экономико-математический словарь
Дифференциальные уравнения — I Дифференциальные уравнения уравнения, содержащие искомые функции, их производные различных порядков и независимые переменные. Теория Д. у. возникла в конце 17 в. под влиянием потребностей механики и других естественнонаучных дисциплин,… … Большая советская энциклопедия
Дифференциальные уравнения — I Дифференциальные уравнения уравнения, содержащие искомые функции, их производные различных порядков и независимые переменные. Теория Д. у. возникла в конце 17 в. под влиянием потребностей механики и других естественнонаучных дисциплин,… … Большая советская энциклопедия
Дифференциальные уравнения — Дифференциальное уравнение в математике это уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи… … Википедия
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ — Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими то величинами. Часто речь идет о соотношении между величинами, изменяющимися с… … Энциклопедия Кольера
Дифференциальные уравнения с отклоняющимся аргументом — уравнения, связывающие аргумент, а также искомую функцию и её производные, взятые, вообще говоря, при различных значениях этого аргумента (в отличие от обычных дифференциальных уравнений (См. Дифференциальные уравнения)). Примерами могут… … Большая советская энциклопедия
Дифференциальные уравнения (журнал) — «Дифференциальные уравнения» ежемесячный математический журнал, посвященный дифференциальным уравнениям и связанным с ними интегро дифференциальным, интегральным уравнениями, а также уравнениям в конечных разностях. Издаётся с… … Википедия
дифференциальные уравнения с запаздывающим аргументом — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN delay differential equation … Справочник технического переводчика
дифференциальные уравнения с частными производными — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN partial differential equations … Справочник технического переводчика
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С МАЛЫМ ПАРАМЕТРОМ ПРИ ПРОИЗВОДНЫХ — система вида где z и у суть, соответственно, М и m мерные векторы, m>0 малый параметр. Полагая в (1) формально m=0, получим так наз. вырожденную систему Пусть решение x(t,m) системы (1) (хозначает z и ув совокупности) определяется нек рыми… … Математическая энциклопедия